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Abstract— Humans are able to understand meaning intu-
itively and generalize from a single observation, as opposed
to machines which require several examples to learn and
recognize a new physical expression. This trait is one of
the main roadblocks in natural human-machine interaction.
Particularly, in the area of gestures which are an intrinsic part
of human communication. In the aim of natural interaction
with machines, a framework must be developed to include the
adaptability humans portray to understand gestures from a
single observation. Most approaches used previously for One-
Shot Learning rely heavily on purely numerical solutions, and
leave aside the mechanisms humans use to perceive and execute
gestures. This gap leads to suboptimal solutions. A framework is
proposed to incorporate the processes of cognition, perception
and execution related to gesturing to the paradigm of one-
shot gesture recognition. By extracting the ”Gist of a Gesture”
and considering biomechanical features of the human arm and
embodied cognition, context in recognition can be achieved.
The performance of the method is evaluated in terms of
independence from the classifying method, efficiency in terms
of comparing to traditional N-shot learning approaches, and
coherence in recognition among machines and humans.

I. INTRODUCTION

Gestures are a key component in human to human inter-
action. As such, we expect machines and service robots to
understand this form of interaction, as intuitively, as humans
do. We can see a gesture only once, and be able to recognize
it the next time that is presented because of our capability
to learn from few examples and ability to associate between
concepts. Starting from a very young age, children are able
to understand meaning intuitively and generalize from a
single observation, as opposed to machines which require
several examples to learn and recognize a new physical
expression. Because of it, learning sessions must be spent
before machines can be used in a natural and straightforward
setting, limiting the scope of natural human-robot interaction.

The problem of recognizing gestures from a single obser-
vation is called One-Shot Gesture Recognition. In the aim
of natural interaction with machines, a framework must be
developed to include the adaptability that current approaches
lack. The limited amount of information provided by a
single observation makes this an ill-posed problem to apply
approaches based exclusively on data mining or statistics;
some form of context is required.

This work proposes that such context can be extracted
by observing, understanding and modeling the mechanisms
involved in gesture generation rather than the single example
provided of a determined gesture class. Such mechanisms
involve cognition, perception and motor execution. The pro-
posed approach integrates in a coherent form aspects of
human perception and cognition through salient features;

physical action through a biomechanical model of the human
body, in particular the upper limbs; and the actual generation
of motion and its spatio-temporal traces. Such an approach
offers a holistic framework to deal with the problem of one
shot gesture recognition and generation. This approach is
validated through experiments studying human and machine
recognition in a variety of scenarios, whereas the success
of this framework is determined by mainly the ability to
mimic human gesture production and recognition, rather than
machine recognition accuracy alone.

Solving the problem of One-Shot gesture recognition in
the scope of Human-Machine Interaction, paves the way for
other learning paradigms such as Zero-Shot learning or un-
supervised One-Shot learning. Including cognitive processes
and modeling human perception and execution of gestures
can enrich context and semantics, which can then be used
to infer the meaning of an unseen gesture. Potential new
applications exist in the field of medicine, assistive tech-
nologies and interactive platforms. For example, in HCI one
observation could be enough to customize a user interface
to a specific user. This reduces training sessions times, and
reduces muscular fatigue associated to repeated muscular
performance. In diagnostics, one shot learning can be used to
understand the neural processes that are involved in gesture
perception and generation. This could potentially be used
for early detection of degenerative diseases or disorders like
apraxia.

II. BACKGROUND
A. Relevance of gestures in communication/interaction

A large body of research has been published and surveyed
around gesture recognition systems, mostly in the context
of human-computer interaction. Ibraheem and Khan [1]
focused on the use of gestures with instrumented gloves
or colored markers, additionally to vision-based approaches.
Other sensor-based gesture recognition is covered by Cor-
era and Krishnarajah [2] including accelerometers, elec-
tromyographic (EMG), and inertial measurement units (IMU)
sensors. Some of the vision-based techniques reviewed by
Mitra and Archaya [3] include particle filtering, optical flow,
skin color models, with various combinations for both hand
and head gestures. A typical pipeline of such operations
include thresholding in different color spaces, edge and
corner detection, morphological operations, blob detection,
optical flow, gradients of orientation, difference of Gaussians,
motion history, and motion energy. Some of these techniques
can be highly dependent on external illumination, skin color
and/or occlusion [4].



Gestures are a form of engaging our body into expressions
with the objective of conveying a message, completing an
action, or as a reflection of a bodily state. Humans are quite
adept at communicating effectively with gestures even when
some of the gestures are spontaneously evoked during inter-
action [5]. Communication grounding and context allows the
observers to infer the meaning of the gesture even when that
specific expression form was not seen before.

It would be beneficial to enable machines to understand
these forms of spontaneous physical expressions that have
been only seen once before. To achieve that goal, one should
consider existing mechanism of communication that include
not only the outcome and meaning of a particular gesture,
but the process involved during gesture production that are
common to different human beings. Such process involves
both cognitive and kinematic aspects.

The cognitive aspects referred are those events that occur
during the production of human gestures. Such events have
been related to improvement of memory and problem solving
[6]-[8]. Research has been conducted to relate gestures to
speech on the neurological level [9], [10], yet the cognitive
processes related to gesture production and perception have
not been considered as a source of valuable information
representative of gestures. These events (fluctuations in EEG
signals related to mu rhythms oscillations) have been linked
recently to gesture comprehension [11]. These cognitive
signatures related to observed gestures may be used to
compress a gesture in memory while retaining its intrinsic
characteristics. When a gesture is recalled, these key points
associated with the cognitive signatures are used to unfold
the gesture into a physical expression. The framework pro-
posed in this work uses these key points as a global form of
gesture representation.

B. One-Shot learning in gesture recognition

One-Shot learning in gesture recognition has gained much
traction since initial works proposed for the Chalearn ges-
ture challenges in 2011 and 2012 [12]. Results of the chal-
lenge were reported by Guyon et al. using the Levenshtein
Distance (LD) metric, where LD=0 is considered the perfect
edit distance [12], [13] and LD=1 a complete error. One
approach by Wan et al. was based in the extension of
invariant feature transform (SIFT) to spatio-temporal interest
points. In that work the training examples were clustered
with the K-Nearest Neighbors algorithm to learn a visual
codebook. Performance was reported by an LD=0.18 [14].

Histogram Oriented Gradients (HOG) have being used
to describe image based representation of gestures. DTW
was implemented as the classification method obtaining
LD=0.17 [15]. Another method relied on extended motion
History Image as the gesture descriptor. The features were
classified using Maximum Correlation Coefficient leading to
an LD=0.26 [16]. In that work dual modality inputs from
RGB and depth data were used from a Kinect sensor.

Fanello et al. relied on descriptors based on 3D Histograms
of Scene Flow (3DHOF) and Global Histograms of Oriented

Gradient (GHOG) to capture high level patterns from the ges-
tures. Classification was performed using a Support Vector
Machine (SVM) using sliding window with LD=0.25 [17].

III. METHODOLOGY

Fig. 1 shows the general pipeline for the proposed imple-
mentation. The user’s motions associated with one gesture
example are detected using a Kinect sensor and the skeleton
information is processed to acquire the trajectories for the
joints in the upper limbs. This is followed by a process
of extracting a compact representation of the gesture class,
referred to as the “gist of the gesture”. This representation
is then used to generate an enlarged data set of artificial
gesture examples through two different methods, a forward
and a backward approach, which consider the kinematics
of the human arm. Once the enlarged data set has been
completed for all the gesture classes in a lexicon, different
state-of-the-art classifiers are trained, namely HMM, SVM,
CRF, DTW. The proposed method is agnostic to classification
method used. Different performance metrics are used to
evaluate performance, among which are accuracy, efficiency
and coherency.
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Fig. 1.

A. Extracting a compact gesture representation

The placeholders of a gesture were obtained in the fol-
lowing way: the number and location of inflexion points
for each hand’s trajectory (an array of three-dimensional
points), the type of curvature present between a pair of
inflexion points (e.g. convex, straight, and concave), and
the sequence of the movement described by the quadrant
where each inflexion point is located with respect to the
gesturer’s shoulder, considering the YZ plane as above and
below the shoulder, and closer to or further away from the
body centroid. The specific magnitude of this coordinate
space is based on anthropometry. The use of inflection points
has been found in previous literature and associated with
depicting the gesturer’s intentions [18], [19]. The motivation
behind this form of gesture encoding is to replicate the way
that humans perceive gestures in order to later decode them
to generate human-like arm/hand trajectories.

The main form of encoding relies on keeping only the
inflections points within a trajectory together with a variance



associated to that point. It can be argued that encoding using
the inflections points may not be the most effective form of
compact representation of a gesture. Yet, in a preliminary
experiment, it was found a relationship between the timing
of mu oscillations and kinematic inflection points, such that
inflection points were followed by interruptions in mu sup-
pression approximately 300 ms later. This lag is consistent
with the notion that inflection points may be utilized as place
holders involved in conscious gesture categorization. The fact
that positive correlations have been observed between abrupt
changes in motion and spikes in electroencephalographic
(EEG) signals associated with the motor cortex supports the
hypothesis of a link between inflection points in motion and
cognitive processes [11]. Therefore, these points can be used
to capture large variability within each gesture while keeping
the main traits of the gesture class.

B. Artificial dataset enlargement

1) Forward Method: This method uses the compact rep-
resentation of the gesture class mentioned previously and
uses the determined inflexion points as the mean for a
Gaussian Mixture Model (GMM). The associated variance
for each mixture of Gaussian is calculated using the different
points within the gesture trajectory. This method was further
explained in [20].

2) Backward Method: This process of generating artificial
observations also relies on the information extracted, or the
“gist of the gesture”.

However, this method focuses on finding a set of V
possible inverse kinematic solutions S; for the joint angles
in the human arm at each inflexion point of the gesture
example. Given a target position for the arm’s end effector,
with 7 degrees of freedom (DOF), several solutions can be
obtained. Choosing an optimal solution S7 at each point
is accomplished through a cost function ¢(-) that considers
physical effort and kinematic optimization options like force-
torque considerations or energy expenditure. To connect the
optimal joint solutions at each inflexion point, a minimum
jerk function is followed while keeping within absolute
constraints of each joint.

This process becomes iterative, when one joint angle
value is altered using a weighted average of other possible
solutions and propagated forward in the gesture motion
producing a new solution §7.

A different approach might also be considered, where one
perturbation in one joint at a given point is propagated to
simulate the human ability to compensate overreaching a
target. This process also becomes iterative as different joints
at different points in the trajectory are altered.

C. Performance metrics

The recognition accuracy metric, A..%, is used to evaluate
the percentage of correct classification over total number of
observations. It is defined in (1) as the ratio of the number
of true estimations, Fy.y., to the total number of testing
examples, Fgqmples. Accordingly, recognition accuracy is
equivalent to the sum of diagonal elements of a confusion

matrix divided by the sum of all elements of matrix. Results
of overall accuracy are calculated as the average of gesture
accuracy per class.

Etrue

Acc% =
Esamples

x 100% (1)

The proposed method has to display generalization ca-
pabilities, which will be compared to N-Shot Learning
approaches to empirically determine the number of samples
required for each classifier to reach the same recognition
accuracy obtained by training them with artificially generated
samples. Thereby we also propose a metric of efficiency 7(+)
(2) that expresses by how much the presented approach is
more efficient than the standard N-Shot learning approach,
given the number of samples samplescyiofy required to
reach the same baseline for accuracy recognition.

samplescytorr — 1

2

sampleScytof f

Another metric is applied to measure the level of coher-
ence 7(-) between the performance of the classifiers and
human observers. Both the classifiers and the human assess
gestures performed artificially by a robot. High coherence
found between human and machine classification indicates
that the method used to generate artificial examples encom-
passes variability that humans understand as being part of
the same gesture class.

The goal with this metric is to evaluate how well the
method presented can mimic human production, perception
and recognition. Coherency (3) is defined as the intersection
between the sets of agreement indices (Alx) for both humans
(MH) and machines (MM). The intersection is measured
when both machine and humans either identify correctly a
gesture or misidentify it regardless of the class where the
agents classified them.

N = AImmachine N Alxhuman

x 100% 3
HAIxhuman” 0 ( )

The Alx is measured as the median of a set of Boolean
values of gesture recognition, which indicate whether the
gesture was being correctly classified (1) or not (0). The
value ||AIzpuman| indicates the count of elements in each
set, which is identical for humans and machines.

IV. RESULTS

In order to test the proposed method for One-Shot gesture
learning, subsets of two publicly available datasets were
used as lexicons: 10 gestures from the Chalearn Dataset
2013 (CGD13), and 8 gestures from the Microsoft Research
Dataset (MSRC-12). The decision to use subsets of the
original datasets relates to the scope of the proposed method,
limited to gestures performed with the upper limbs and
avoiding gestures that are distinguishable by detecting hand
configuration.



A. Recognition accuracy

The average recognition per gesture lexicon, as well as
Ac:% are shown in table 1. All the results are comparable,
with highest recognition for the SVM and lowest for CRF. It
is considered a positive result to have comparable accuracies
for different classifiers, since the method developed for one-
shot learning is agnostic of the classification method used.
Further details on these results are reported in [20], [21].

TABLE I
RECOGNITION ACCURACY (%) FOR TRAINED CLASSIFIERS AND
DIFFERENT DATASETS

Data set | HMM | SVM CRF DTW
CGD13 91.0% | 92.6% | 86.4% | 89.5%
MSRC-12 | 90.6% | 93.3% | 91.4% | 91.1%

B. Efficiency compared to N-Shot Learning

The efficiency of the approach was compared with that
obtained with N-shot learning. This comparison used the
recognition accuracy obtained in the previous section as a
baseline to determine the number of samples required to
achieve similar recognition results in a traditional N-shot
learning approach. The cutoff values for the number of
samples where the recognition accuracy for each classifier
reached the baseline were used to determine the efficiency
metric 7. Results are shown in Table II. These results are
fully presented in [21].

TABLE II
EFFICIENCY METRIC (77) FOR TRAINED CLASSIFIERS PER DATASET

n HMM | SVM | CRF | DTW
CGD13 0982 | 0979 | 0.981 | 0.983
MSRC-12 | 0979 | 0976 | 0.985 | 0.985

This metric is related to the ability to save data acquisition
time. This means reducing the time needed to acquire and
process numerous training samples. This perspective on
classification performance is an advance on current views
of the one-shot learning problem.

V. FUTURE PLAN AND CHALLENGES

It is considered within the future work of this dissertation
to develop the backward method related to inverse kinematics
of the human arm and the selection of solutions based on
ergonomics and minimum effort needs to be implemented.
Additional experiments have to be conducted to further
assess the independence of the system of the classification
methods chosen, the impact of additional variability towards
accuracy, and coherence of the method when the roles
between humans and machines performing and recognizing
gestures are interchanged. Another expectation is to increase
the number of datasets tested, and the number of gesture
classes evaluated.
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