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Abstract— Detecting increases in the likelihood of a fall well
before it actually happens will positively affect lives of the
elderly. While the main causes of falling are related to postural
sway and walking, determining abnormalities in one of these
activities or both of them would be informative to predict the
fall probability. A need exists for a portable gait and postural
sway analysis system that can provide individuals with real-
time information about changes and the quality of gait in the
real world, not just in a laboratory. This research project aims
to build a system that finds the correlation between vision
extracted features and force plate data to determine a general
gait and body sway pattern. Then, this information is used
to assess a difference to normative age and gender relevant
patterns as well as any changes over time. This could provide
a core indicator of broader health and function in ageing and
disease.

I. RESEARCH VISION

Maintaining a high standard of life for the elderly enables
them to live their lives with minimum fear of sudden
accidents. Falling is one of the most important problems
that affect elderly lives. It causes injuries that may be
deadly or decrease the functional ability and the quality
of life. Predicting falls before they happen makes a critical
difference, enabling optimal self-care for elderly adults.

This work aims to develop an application for self moni-
toring of an individuals based on vision and accelerometer
data. Capturing changes in the movement patterns as persons
age enables them to intervene if they detect deterioration
in movement performance and seek help if needed before
a serious fall happens. The research is innovative in that
there is no current method of evaluating change in movement
performance in walking that can be applied at the individual
level that references normative population data. Current
assessment of sway, in particular the lateral sway, which
is particularly relevant to falls, relies on the use of force
platforms. While these have become less expensive in recent
years, it is unlikely that these will be omnipresent in homes
any time soon.

Our methodology is to build an algorithm to link vision
data and force plate data together and to explore the corre-
lation between them. A focus of this algorithm will be on
measuring the changes in the lateral sway while standing and
walking and quantifying these changes.

This work was partly carried out in the National Information and
Communications Technology (ICT) Australia (NICTA) and its successor
organisation Data61 that was supported by the Australian Government
through the Department of Communications and the Australian Research
Council through the ICT Center of Excellence Program.

Postural sway is the movement of the body’s centre of
pressure (CoP) to maintain body balance [1]. A certain
amount of sway is essential and inevitable due to small
perturbations within the body, such as shifting body weight
from one foot to the other, or from external triggers such as
visual distortions or floor translations.

During the process of ageing, people’s postural sway
changes and different strategies are used to keep the body
balanced. As a result of such changes, the likelihood of
falling increases as people age.

Measuring body sway while standing can be done by
performing one of the balance tests, such as Balance Error
Score System (BESS) [2], on the force plate. A force plate
captures the body’s CoP with high accuracy that reflects the
body sway. Different metrics have been identified to measure
postural sway to understand the body movements, such as
sway area, speed, frequency, and total path length [3]. A
clinical study of these and other metrics related to the human
gait has been initiated in order to analyse human body
movements during standing and walking for the purpose of
determining the normal patterns for these movements and
defining any abnormality from these patterns when present.

With the evolution in computational imaging and im-
age processing algorithms, studying and analysing human
movements has seen much interest from computer vision
researchers in recent years. In the literature, the dominating
areas of interest are recognising and identifying a person
from the walking style and detecting falls.

Our work extends this body of knowledge on computer
vision systems for analysing gait and postural sway over time
in order to detect the abnormal patterns of such movements
and predict the increased likelihood of a fall in order to
prevent it by winning time to intervene. Specifically, this
paper deals with the modelling of the lateral postural sway
part and shows that the force plate can be reliably replaced
by an inexpensive and mobile video camera to estimate the
lateral sway in the context of a balance test.

II. WORK SUMMARY

This section summarizes the work that has been done to
this end in the main parts of the project: the dataset, postural
sway estimation, and gait analysis.

A. Dataset
The dataset is considered as the first contribution in this
work. After furnishing the proper ethics approvals and re-
search permissions, a confidential clinical dataset was col-
lected and used for this study. Existing clinical datasets that



(a) (b)

Fig. 1: (a) Recording set up, (b) Vicon markers placed on
the human body and their labels.

include gait and postural sway activities and use force plates
for measuring the sway have usually been collected in health
care settings and, hence, were confidential and unavailable
to us. Moreover, video cameras or a motion capture system
that we need to assess the accuracy of the modelling were
typically not included. On the other hand, computer vision
datasets usually do not include postural sway information
that we also need. When the dataset contains gait infor-
mation, it was for tasks such as person tracking, action
recognition, or human recognition/identification.

1) Ground Truth Dataset: The ground truth of this study
is done by establishing a 3-way correlation between the
clinical gold standard (force plate), a highly accurate multi-
camera 3D video tracking system (Vicon) and a standard
RGB video camera.

Eighteen subjects, males and females, performed normal
walking for about 10m, including making a U-turn, as well
as the three stances of the BESS test on an AMTI force
plates. Each subject performed this sequence of activities
three times in a row, with a minimal break in between. The
activities were recorded by three video cameras: a front view,
a side view, and a back view. Twelve T-series Vicon cameras
were used to capture 3D motion from sixteen markers that
were placed on the subject’s body (Fig. 1).

The measurable object from the videos is the movement
of the body parts. As the feet, legs, and trunk are the major
motor reactors in maintaining body balance, Vicon markers
were placed on different joints related to these body parts to
capture the body movements during the gait and balance test
activities. There are markers on similar places on the front
and the back of the body and they show highly correlated
movement patterns. This is important to know for future de-
velopments, as it allows the body to be observed from either
the front or back with similar results. These markers are
CLAV (on the clavicle), C7 (7th Cervical Vertebrae), STRN
(on the Sternum), T10 (10th Thoracic Vertebrae), RASI (right
anterior superior iliac spine), RPSI (right posterior superior
iliac spine), LASI (left anterior superior iliac spine), and LPSI
(left posterior superior iliac spine). Marker selection for the
regression model is based on the average correlation values
between extracted medial-lateral sway from the force plate

and the tracked labelled joints over all video frames of a
sequence.

2) Normative Dataset: This part of the dataset will be
collected on three phases separated by three months. Thirty
elder people are asked to walk for about 10 metres crossing
on the force plate and do the BESS test on the force plate
while two video cameras are recording. The Vicon system
is excluded from this part of the dataset. Labels are placed
on the participants body on points that corresponding to the
Vicon markers on torso and legs.

B. Postural Sway Estimation

Postural sway estimation while standing is the second con-
tribution in this work. Starting with a video sequence as
input, followed by feature processing, regression was used to
build a model to estimate the lateral postural sway (Fig. 2).
Put differently, the feature processing step prepared the input
video sequences to extract relevant information reflecting the
medial-lateral sway – the horizontal right-to-left movements
– from which a computational model can be built. Using
two non-linear regression methods, namely Gaussian Process
Regression (GPR) [4] and Recurrent Neural Network (RNN)
[5], [6], [7], to model the postural sway from the prepro-
cessed features by linking them to the data from the force
plate. The 3D motion capture data served as an additional
way to assess the accuracy of the model.

1) Sway Metrics: Postural sway is usually determined by
measuring the movements of the body’s CoP captured by the
force plate. The area enclosed by the movements of the CoP
in the X-Y plane is known as the sway area, which is used
as a basic measurement for the postural sway [3]. Total path
length, sway speed and frequency are other parameters that
are commonly used to describe the amount of postural sway
from force plate data. In addition to that computing the sway
area using an input from monocular camera is quite difficult,
the medial-lateral sway is the body movement that we are
interested in, as it is the main predictor for an increased
likelihood of a fall. These lateral movements reflect the body
balance even while standing.

We devised 1D equivalents to these 2D metrics that can
be used to measure, analyse and compare the medial-lateral
sway. Sway signal shape represents the general pattern of

Fig. 2: Proposed methodology: (from left to right) Beginning
with the video frames with annotated joint locations in the
first frame, these points are tracked over the frames to extract
medial-lateral sway, which is passed to the regression model
(i.e. Gaussian process regression or recurrent neural network)
to estimate the centre of pressure movements, originally
measured by the force plate.



medial-lateral sway over a period of time. Then, we use the
mean absolute error (MAE) to measure how far the estimated
sway is from the corresponding ground truth force plate
signal. The correlation between estimated and ground truth
signals is also calculated to assess the extent the signals are
correlated. Maximum sway range and sway frequency within
threshold are further proposed to analyse the postural sway
based on the body medial-lateral sway.

Sway Signal Shape: The similarity in shapes between
medial-lateral sway in ground truth from the force plate and
the predicted medial-lateral sway from video can be used to
confirm that the predicted signal is approaching the ground
truth signal. Mean absolute error (MAE) and correlation
values are used to quantify this similarity.

Maximum Sway: If one direction of the medial-lateral
sway is noted as d, the maximum sway can be determined
by the difference between the farthest reached points in both
directions d and −d. (In this study, this refers to the left-right
movements of the body.)

Sway Frequency: Within the specified ranges, a sway
frequency represents the number of times the direction of
the body’s medial-lateral sway changes within one of these
ranges in a given time period. In our experiments, the ranges
defined in Fig. 3 are used. Bigger maximum sway and high
sway frequencies close to the maximum sway range (red in
Fig. 3) reflect a person’s instability and indicate a higher
possibility to fall.

2) Sway Estimation from a Single Joint: Estimating pos-
tural sway started by using single joint (using more than
one joint remains as an extension). The labeled joint that is
corresponding to the STRN Vicon marker is used to estimate
the postural sway as its movements are highly correlated to
the force plate signals compared to other labels.

Using the regression methods TGPR and RNN, we build
subject independent models that can predict the medial-
lateral sway from tracking the selected joint. This joint is
labelled in the first frame of the video and corresponds to
the STRN vicon marker. The experiments show the ability
to estimate medial-lateral sway from a video sequence at
a sufficiently high level of accuracy when compared to the
clinical gold standard (force plate). Examples of estimated
medial-lateral sway from the tracked STRN joint in the video
sequences using TGPR and RNN regression methods are
shown in Fig. 4 for the three stances in the BESS balance test.
The predicted medial-lateral sway using TGPR is smoothed
out, which is a main characteristic of the Gaussian process
regression algorithms. Consequently, TGPR is not as good in
predicting sudden moves. On the other hand, as shown in the

Fig. 3: Visualisation of sway ranges. The more frequent
medial-lateral sway values in ranges that are close to the
maximum sway, the higher the likelihood of a future fall
occurring.
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Fig. 4: Examples of the predicted medial-lateral sway from
a tracked joint in the video sequences that corresponds to
the STRN Vicon marker in the BESS stances: (a) Double
stance, (b) Single leg stance, and (c) Tandem stance. Results
are presented as histograms where the bins correspond to the
quartiles of the maximum sway range.

Fig. 4, RNN is better in predicting sudden moves, which are
represented by the high peaks in the graphs. Sudden moves
occur more frequently in the single leg and tandem stances
where maintaining the balance becomes more difficult than
in the double leg stance.

The sway ranges, shown in Fig. 3 as quartiles of the
maximum sway of each subject, are used to calculate the
sway frequencies in the predicted medial-lateral sway and
compared to the sway frequencies calculated from the ground
truth in the same ranges. Examples for sway frequencies are
shown in Fig. 5. In the double stance, most of the medial-
lateral sway occurred within the ranges that are close to
the mid-point where the balance is more maintainable in
this stance. Because of the smoothness in TGPR predictions,
changes in the direction of the body sway are imperceptible
enough to be counted as a sway change. Single leg and
tandem stances have more moves to count within the ranges
that are closer to the maximum sway. The RNN method more
accurately approaches the sway frequencies of the ground
truth in these stances (see Fig. 5(b and c)).
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Fig. 5: Example of sway frequencies that are counted within
specified ranges related to the maximum sway for the ground
truth signal and predicted signals using TGP and RNN in
(a) Double leg stance, (b) Single leg stance, and (c) Tandem
stance.

C. Gait measurement and analysis

Many parameters have been identified to measure and anal-
yse human gait [8], [9]. Some of these parameters, such as
step base and step length, are changed while ageing to control
the body balance while walking. In this work, we try to build
a pattern for normal gait within an age group and a pattern
of normal changes for an individual over time within this
group.

III. FUTURE PLANS AND CHALLENGES

Medial-lateral sway is an important indication of the human
postural sway. Bigger medial-lateral sway indicates poor
balance maintaining, which increases the likelihood of a fall
in the future. In the current clinical practice, force plates are
the gold standard to measure the postural sway. However,
they are clinical environment equipment that require special
installation, are expensive and are not easily moved.

In this study, the goal is to investigate approaches to
predict the medial-lateral sway from tracked joints in RGB
video sequences, which would open up the opportunity to
use everyday video technology in the assessment of postural
sway. To this end, a new dataset was recorded using a
force plate as ground truth, RGB video cameras and a

Vicon 3D motion capture system to establish a model that
accurately predicts lateral sway parameters from simple RGB
video input. TGP and RNN were investigated for building
a regression model for sway prediction. The RNN based
method showed better prediction performance for the medial-
lateral sway than TGPR, especially in the tandem and single
leg stances, where sudden movements occur more frequently.

The future plan for estimating the postural sway from
vision data will focus on: 1) Using a body part detector for
the initialisation instead of manually labelling the body parts
in the first video frame. 2) As the sway movements are small,
we hypothesise that amplifying these movements would
improve the extracted features from the video sequences
to estimate the body postural sway. 3) Generalising the
current framework for different stances and different types
of postural sway.

The main future goal for this work is to predict an accurate
warnings for the increased fall risk based on the gait and
postural sway of the subjects over longer periods of time.
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