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Fig. 1. Examples of speech-related facial activities, where different AUs
are activated non-additively to pronounce speech. (a) The gap between teeth
is occluded by the pressed lips in a combination of AU24 and AU26 when
sounding /m/ and (b) the space between teeth is partially visible due to the
protruded lips in a combination of AU18, AU25, and AU27 when producing
/2.

I. INTRODUCTION

Facial behavior is the most powerful and natural means
of expressing the affective and emotional states of human
being [12]. The Facial Action Coding System (FACS) de-
veloped by Ekman and Friesen [4] is a comprehensive and
widely used system for facial behavior analysis, where a
set of facial action units (AUs) are defined. According to
the FACS [5], each facial AU is anatomically related to the
contraction of a specific set of facial muscles, and combina-
tions of AUs can describe rich and complex facial behaviors.
Besides the applications in human behavior analysis, an
automatic system for facial AU recognition has emerging
applications in advancing human-computer interaction (HCI)
such as interactive games, computer-based learning, and
entertainment. Extensive research efforts have been focused
on recognizing facial AUs from static images or image
sequences as discussed in the survey papers [13], [20], [15].

In spite of progress achieved on posed facial display
and controlled image acquisition, recognition performance
degrades significantly for spontaneous facial displays [17],
[16].

Furthermore, recognizing AUs that are responsible for
producing speech is extremely challenging, since they are
generally activated at a low intensity with subtle facial
appearance/geometrical changes during speech and, more
importantly, often introduce ambiguity in detecting other co-
occurring AUs [5], e.g., producing non-additive appearance
changes. For instance, as illustrated in Fig. [[(a), recognizing
AU26 (jaw drop) from a combination of AU24 (lip presser)
+ AU26, when voicing a /m/, is almost impossible from
visual observations. The reason is that the gap between
teeth, which is the major facial appearance clue to recognize
AU26 [5], is small and invisible due to the occlusion by
the pressed lips. In another example, when producing /5, as
shown in Fig. [T[b), AU27 (mouth stretch) would probably be
recognized as AU26 because the lips are protruded due to the
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Fig. 3. Example images in the challenging subset collected from different
illuminations, varying view angles, and with occlusions by glasses, caps, or
facial hairs.

activation of AU18 (lip pucker), which makes the opening
of mouth smaller than that when only AU27 is activated.
The failure in recognition of speech-related AUs is because
we extract information from a single source, i.e., the visual
channel, in the current practice. As a result, all speech-related
AUs are represented by a uniform code [5], [17], i.e., AD 50,
or totally ignored [16], during speech. However, identifying
and differentiating the speech-related AUs from the others
that express emotion and intention is critical to emotion
recognition, especially during emotional speech.

Instead of solely improving visual observations of AUs, we
proposed to explore and exploit the information from both
audio and visual channels for AU recognition. Specifically,
facial AUs and voice are highly correlated in two ways.
First, voice/speech has strong physiological relationships
with some lower-face AUs such as AU24, AU26, and AU27,
because jaw and lower-face muscular movements are the
major mechanisms to produce differing sounds. These re-
lationships are well recognized and have been exploited
in natural human communications. For example, without
looking at the face, people will know that the other person is
opening his/her mouth by hearing ah. Following the example
of recognizing AU26 from a combination of AU24 and AU26
as illustrated in Fig. 1(a), people can easily guess both AU24
and AU26 are activated because of a sound /m/, although
AU26 is invisible from the visual channel. Second, both fa-
cial AUs and voice/speech convey human emotions in human
communications. Since the second type of relationships is
emotion and context dependent, we will focus on studying
the physiological relationships between AUs and speech,
which are more objective and will generalize better to various
contexts.

II. SUMMARY OF THE WORK TILL DATE

A. Audiovisual AU-coded Dataset

As far as we know, the current publicly available AU-
coded databases only provide information in visual channel.
Furthermore, all the speech-related AUs have been either
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Fig. 2. A list of speech related AUs and their interpretations included in the audiovisual database.

annotated by a uniform label, i.e., AD 50 [17] or not
labeled [16], during speech. In order to learn the semantic
and dynamic physiological relationships between AUs and
phonemes, as well as to demonstrate the proposed audiovi-
sual AU recognition framework, we have constructed a pilot
AU-coded audiovisual database consisting of two subsets,
i.e. a clean subset, and a challenging subset. Fig. ] illustrates
example images of the speech-related AUs in the audiovisual
database.

There are a total of 13 subjects in the audiovisual database,
where 2 subjects appear in both the clean and challenging
subsets. All the videos in this database were recorded at
59.94 frames per second at a spatial resolution of 1920 x 1080
with a bit-depth of 8 bits; and the audio signals were recorded
at 48kHz with 16 bits.

In the clean subset, videos were collected from 9 subjects
covering different races, ages, and genders. It consists of
12 words EL which contain 28 phonemes and the most
representative relationships between AUs and phonemes.
Each subject was asked to speak the selected 12 words
individually, each of which will be repeated 5 times. In
addition, all subjects were required to keep a neutral face
during data collection to ensure all the facial activities are
only caused by speech.

Videos in the challenging subset were collected from
6 subjects covering different races and genders speaking
the same words for 5 times as those in the clean set.
As illustrated in Fig. [3] the subjects were free to display
any expressions on their face during speech and were not
necessary to show neutral face before and after speaking the
word. In addition, instead of being recorded from the frontal
view, videos were collected mostly from the sideviews with
free head movements and occlusions by glasses, caps, and
facial hairs, introducing challenges to AU recognition from
the visual channel.

Groundtruth phoneme segments and AU labels were
recorded in the database. Specifically, the utterances were
transcribed using the Penn Phonetics Lab Forced Aligner
(p2fa) [19], which takes an audio file along with its corre-
sponding transcript file as input and produces a Praat [2]
TextGrid file containing the phoneme segments. 7 speech-
related AUs, i.e. AU18, AU20, AU22, AU24, AU25, AU26,
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IThe 12 words including “beige”,“chaps”,“cowboy”, “Eurasian”,
“gooey”,*hue”,“joined”,“more”,“patch”,“queen”, “she”, and ‘“‘waters”
were selected from English phonetic pangrams (http://www.
liquisearch.com/list_of_pangrams/english_phonetic_

pangrams) that consists of all the phonemes at least once in 53 words.

and AU27, as shown in Fig. 2] were frame-by-frame labeled
manually by two certified FACS coders.

B. Feature-level fusion for facial AU recognition

First, we propose to directly employ information from the
visual and the audio channels by integrating the features
extracted from the two channels. Figure ] illustrates the pro-
posed audiovisual feature-level fusion framework for facial
AU recognition. Given a video, visual features and acoustic
features are extracted from the images and the audio signal,
respectively. To deal with the difference in time scales as well
as the time shift between the two signals, the audio features
need to be aligned with the visual features such that the two
types of features are extracted at the same point in time.
Then, the aligned audio and visual features are integrated
and used to train a classifier for each target AU.

In order to demonstrate the effectiveness of using audio
information in facial AU recognition, two different types of
visual features are employed, based on which two feature-
level fusion methods are proposed. The first method is
based on a kind of human-crafted visual feature. Then, the
audio and visual features are directly concatenated to form
a single feature vector, which is used to train a classifier for
each target AU. The other method employs visual features
learned by a deep convolutional neural network (CNN). Then
the audio and visual features are integrated into a CNN
framework.

Experimental results on the audiovisual AU-coded dataset
have demonstrated that both fusion methods outperform their
visual counterparts in recognizing speech-related AUs. The
improvement is more impressive with occlusions on the
facial images, which would not affect the audio channel.

C. Audio-based facial AU recognition

Second, we proposed a novel approach to recognize
speech-related AUs from speech by modeling and exploit-
ing the dynamic and physiological relationships between
AUs and phonemes through a Continuous Time Bayesian
Network (CTBN) [11]. CTBNs are probabilistic graphical
models proposed by Nodelman [11] to explicitly model the
temporal evolutions over continuous time. CTBNs have been
spotted in different applications, including users’ presence
and activities modeling [10], robot monitoring [9], sensor
networks modeling [8], object tracking [14], host level
network intrusion detection [18], dynamic system reliability
modeling [3], social network dynamics learning [6], cardio-
genic heart failure diagnosis and prediction [7], and gene
network reconstruction [1].
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Fig. 4. The flowchart of the proposed feature-level fusion framework for bimodal facial AU recognition.
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Fig. 5. The flowchart of the proposed audio-based AU recognition system:
AU recognition process via probabilistic inference.

By considering AUs and phonemes as dynamic events, the
CTBN model aims to explicitly characterize the relationships
between AUs and phonemes, and more importantly, to model
the temporal evolution of the relationships as a stochastic
process over continuous time. Fig. ] illustrates the proposed
audio-based AU recognition system. During the training
process (Fig. 5[a)), ground truth labels of AUs and phonemes
are employed to learn the relationships between AUs and
phonemes in a CTBN model. Furthermore, this model should
also account for the uncertainty in speech recognition. For
online AU recognition, as shown in Fig. Ekb), measurements
of phonemes are obtained by automatic speech recognition
and employed as evidence by the CTBN model; then AU
recognition is performed by probabilistic inference over the
CTBN model.

Experimental results on the AU-coded audiovisual dataset
show that the proposed CTBN model achieves promis-
ing recognition performance for 7 speech-related AUs and
outperforms the state-of-the-art visual-based methods espe-
cially for those AUs that are activated at low intensities or
“invisible” in the visual channel. Furthermore, the CTBN
model yields more impressive recognition performance on
the challenging subset, where the visual-based approaches
suffer significantly.

(a) an offline training process for CTBN model learning and (b) an online

D. Audiovisual facial AU recognition via DBN

Third, Fig. [6] depicts the flowchart of the proposed au-
diovisual AU recognition system. During the training stage
(@a)), given a set of videos, ground truth labels of AUs and
phonemes are employed to learn the relationships between
AUs and phonemes in a DBN model. In addition, this model
should represent the uncertainties in both AU and speech
recognition. For online AU recognition, as illustrated in @b),
given a video, visual-based AU recognition is performed to
obtain the measurements of AUs; and speech recognition
is conducted to obtain the measurements of phonemes.
Then, all measurements are fed into a DBN model, which
captures the physiological relationships between AUs and
phonemes as well as measurement uncertainty. AU recogni-
tion is performed by audiovisual information fusion via DBN
inference.

Experiments on the AU-coded audiovisual dataset have
demonstrated that the proposed audiovisual fusion frame-
work yields significant improvement in recognizing speech-
related AUs compared to the state-of-the-art visual-based
methods and the feature-level fusion method. In addition,
the proposed framework achieves consistent improvements
for speech-related facial AUs based on two state-of-the-art
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Fig. 6. The flowchart of the proposed audiovisual AU recognition system: (a) an offline training process for DBN model learning and (b) an online AU

recognition process via probabilistic inference over the DBN model.

visual based methods. Furthermore, drastic improvement has
been achieved for those AUs, whose visual observations are
impaired during speech.

III. FUTURE WORK AND CHALLENGES

We plan to use CTBN to model the semantic and dynamic
relationships between AUs and phonemes, and utilize infor-
mation from both visual and audio channels to recognize
speech related facial AUs. Since CTBN does not work well
with discrete measurements, we need to figure out how to
integrate the measurements into CTBN to produce facial AU
recognition results over continuous time.
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