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Abstract— Multi-view images are of great abundance in real-
world applications, since various view-points and multiple
sensors desire to represent the image data in a better way.
Conventional multi-view learning methods aimed to learn
multiple view-specific transformations meanwhile assumed the
view knowledge of training and test data were available in
advance. However, they would fail when we do not have
any prior knowledge for the probe data’s view information,
since the correct view-specific projections cannot be utilized
to extract effective feature representations. In my research, I
manage to develop a Common Low-Rank Subspace (CLRS)
algorithm to deal with this problem in view-unknown image
classification, which attempts to mitigate the semantic gap
across multiple views through seeking a view-shared low-rank
projection shared by multiple view-specific transformations.
The common low-rank subspace makes our algorithm more
flexible when addressing the challenging issue without any
prior knowledge of the probe data’s view information. To that
end, two different settings of experiments on several multi-view
benchmarks are designed to evaluate the proposed approach.

I. INTRODUCTION

Multi-view image classification has attracted a great deal
of attention recently, since multi-view images are frequently
seen in reality [1], [2], [3], [4]. Take face image as an
example. Face images captured with cameras located in
various viewpoints would have pose variations while differ-
ent devices would generate different modalities, e.g., low-
resolution face taken by a cellphone or even collected with
near-infrared sensor. Such image data with large pose or
modality divergence would result in a challenging classifica-
tion problem. Here, we consider cross-pose image and multi-
modal image as multi-view image. In general, different views
can be treated as different domains drawn from different
distributions. Therefore, it is the key to adapt one view to
another view to minimize the distribution divergences across
them [1], [5].

Conventional multi-view subspace methods [1], [2] were
developed to seek many view-specific projections, which
transform different views into a common view-free space.
Along this line, Canonical Correlation Analysis (CCA) [6]
was the most representative one, which learned two pro-
jections, each for one view, to align two-view data into
the shared space, respectively. Further, multi-view CCA [7]
was proposed and extended to multiple view cases based
on CCA. Following this, Kan et al. designed a Multi-
view Discriminant Analysis (MvDA) algorithm [1], which
sought an effective shared space by jointing multiple view-
specific linear projections learning and Fisher constraint in

a unified framework. One common drawback is that those
previous researches [1], [2], [7] mainly dealt with the multi-
view learning tasks by applying one labeled view to predict
another unlabeled view. Hence, we have to know the view
knowledge of training and test data ahead of time, since
they only learn multiple view-specific projections. Only with
view-information at hand can the view-specific projections be
adopted to the exact views, therefore, we need a lot of prior
knowledge in real-world multi-view learning scenarios.

Unfortunately, we cannot always obtain the test data’s
view information in advance at many real-world scenarios,
since the test data are always accessible during evaluation.
For example, a face image could be captured at running time
with view-unknown camera so that we cannot get its exact
view knowledge. In such cases, conventional multi-view
learning methods cannot work, since they only built multiple
view-specific projections during training stage, which are not
helpful for each view-known test data. Another phenomenon
is that the test images can be in the same distribution
with the training data or totally different distributions from
the training data. This leads to two scenarios: “traditional
multi-view learning” [1], [2], [7] and “multi-view transfer
learning”[8], [4] . When fighting off the target multi-view
data with no prior knowledge either view information or label
knowledge or both, we can ask help from an auxiliary multi-
view sources to facilitate the target learning problem. In this
scenario, transfer learning has shown appealing performance
in dealing with limited data and challenge no labeled data
[9]. Along this line, feature adaption is a popular strategy
in transfer learning, which aims to extract effective domain
invariant features to reduce the domain shift so that the
source knowledge could be transferred to the target [10],
[8].

II. SUMMARY

So far, we have developed a multi-view learning algorithm,
named Collective Low-Rank Subspace (CLRS), to deal with
the challenge where the view knowledge of the test data
are unavailable during the learning task (Fig. 1), which is
extended by my ICDM-14 work [5]. Following conventional
multi-view subspace learning algorithms, we also learn the
view-specific transformations for view-known training data
to project the data into a latent view-free space in the
training stage. Since we do not know the probe data’s view
information, we need to find a surrogate to preserve as
much class information as possible, meanwhile reducing the
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Fig. 1. Framework of the proposed Collective Low-Rank Subspace (CLRS)
algorithm. Here we show three views (poses) and the same color represents
the same view, while each view consists of three classes (the same shape
denotes the data with same label). (a) We still adopt multiple view-specific
projections {P1,P2,P3} for three views {X1,X2,X3} during the training
stage. (b) Aiming to address the view-unknown testing data, we seek
a surrogate by learning a low-rank shared transformation P for data D
with three mixed views. (c) To further uncover more shared knowledge
across multiple views, we adopt low-rank sparse decomposition to make the
common P capture more shared information across those view-specific ones
(Pi = P+ Si, where Si is the sparse residue of the i-th view projection).

impact of view divergence for mixed view-unknown test data,
either in the same distribution or different distributions. On
the account that the multiple view-specific projections all
preserve the within-class knowledge for its specific view. In
other words, those view-specific projections should have the
similar discriminability for classification in different views.
In other words, it is essential to find the consistent knowledge
across multiple view-specific projections for view-unknown
test data. To seek a more effective projection for view-
unknown test data, we employ a collective low-rank pro-
jection to uncover most of the compatible structure across
multiple view-specific projections, which are decomposed
into the common part and sparse unique parts. Thus, the
proposed algorithm is more flexible to solve real-world
multi-view problems when we cannot have the view or even
label information for the probe data at hand.

A. The Proposed Algorithm

Assume we have k-view training data as
X = [X1, · · · ,Xk], and each view Xi ∈ Rd×m contains
the same c classes with m data samples. The view-specific
transformation P̄i ∈ Rd×d would be learned for the i-th
view Xi following the conventional multi-view learning.
Hence, each P̄i represents the basis to expand the space of
each view Xi, i.e., P̄i = XiAi, where Ai is weight matrix.
As discussed before, multiple view-specific projections have
the similar discriminability in their own view so that they
should have a lot of shared knowledge. Then, we aim to
seek as many common bases as possible across multi-view
data so that such common basis can be generalized to
view-unseen test data. To this end, we adopt a collective
low-rank transformation P̄ ∈ Rd×d to uncover such
consistent knowledge that it can be extended to work for
view-unknown test data. Specifically, we exploit low-rank
sparse decomposition by assuming each P̄i is combined
of P̄ and their unique sparse residue S̄i ∈ Rd×d, so more
common knowledge could be uncovered.

Since P̄ is low-rank, there are many bases very similar,
resulting in much redundant information within P̄. Assume
the rank of P̄ is p (p � d), hence, we can adopt the
p bases to extract effective features from multi-view data,
which could help well deal with the curse of dimensionality.
Specifcially, we have P ∈ Rd×p,Pi ∈ Rd×p,Si ∈ Rd×p are
p columns of P̄, P̄i, S̄i, respectively. And we further add an
orthogonal constraint P>P = Ip (Ip ∈ Rp×p is an identity
matrix) to make the P with the full rank of p.

Following the idea of low-rank subspace learning, we
desire to exploit low-rank representation to build a bridge
across the view-specific features and the shared features (Fig.
1). Hence, knowledge across multiple view-specific transfor-
mations could be transferred to the common subspace. Due to
the real-world data are always noisy, we design a sparse error
term to figure out the noise or outliers. Finally, the objective
function can be achieved by integrating common subspace
and low-rank reconstruction into a unified framework as:

min
P,Zi,Ei,
Si,Pi,Z

k∑
i=1

(
rank(Zi) + λ0‖Si‖1 + λ1‖Ei‖2,1

)
+ λ2Ω(P,Z)

s.t. P>i Xi = P>DZi + Ei, Pi = P + Si,

i = 1, · · · , k, P>P = Ip,
(1)

where Zi ∈ Rm̄×m is the i-th low-rank reconstruction
coefficient. Ei ∈ Rp×m is the error term and ‖ · ‖2,1 is the
L2,1-norm, i.e., ‖Ei‖2,1 =

∑p
k=1

√∑m
j=1([Ei]kj)2, which

aims to detect and remove outliers. And λ1 and λ2 are two
trade-offs to balance three parts. Ω(P,Z) is a regularizer
to preserve more discriminative information across multiple
views.

In the above objective function, D ∈ Rd×m̄ denotes the
data with mixed k views, which has different definitions in
different scenarios. In feature learning setting, D means the
dictionary (m̄ is the atom size of dictionary), which usually
adopts the data itself X for simplicity. In this paper, we also
directly use X as the basis. Whilst in transfer learning setting,
D denotes the unlabeled target domain and X represents
the well-labeled source domain. We can easily understand
that we are dealing with an unlabeled multi-view dataset
by borrowing the knowledge from a well-learned source
domain. Objective function (1) would help facilitate the
target learning with the the view/label knowledge of source
domain.

To better utilize the label information in the training stage,
we employ a supervised graph regularizer to align cross-view
data within the same class. Model (1) only utilizes the view-
information of the training data so that it works in a weakly
supervised fashion. Moreover, model (1) exploits a multi-
task scheme, that is, data from each view are reconstructed
by the commonly projected data in an individual manner. It
is very important to align different views to make the learned
collective subspace more discriminative. We first denote the
projected low-dimensional data of each view Yi = P>i Xi

(P>DZi ∈ Rp×m can be treated as its clean version), so the
multi-view projected data Y = [Y1, · · · ,Yk] ≈ P>DZ =
P>D[Z1, · · · ,Zk] ∈ Rp×km. Based on the reconstructed



TABLE I
RECOGNITION PERFORMANCE (%) OF 10 ALGORITHMS ON THE ORIGINAL IMAGES FROM CMU-PIE FACE DATASET, IN WHICH CASE 1: {C02, C14},

CASE 2: {C02, C27}, CASE 3: {C14, C27}, CASE 4: {C05, C07, C29}, CASE 5: {C05, C14, C29, C34}, CASE 6: {C02, C05, C14, C29, C31}

PCA[11] LDA[12] LPP[13] TFRR[14] SRRS[15] LRCS [5] MvDA[1] RMSL[3] Ours
Case 1 69.03±0.08 70.46±0.05 57.25±0.06 77.92±0.03 78.27±0.04 87.78±0.22 85.23±0.05 88.15±0.06 87.24±0.03
Case 2 69.21±0.08 71.32±0.02 58.83±0.07 76.24±0.12 78.74±0.23 86.67±0.09 85.81±0.09 87.05±0.07 86.82±0.11
Case 3 68.52±0.12 63.51±0.75 59.25±0.56 75.29±0.07 77.45±0.02 87.38±0.39 86.12±0.12 87.40±0.17 87.97±0.09
Case 4 52.65±0.04 56.53±0.02 43.56±0.08 69.74±0.05 71.44±0.03 74.84±0.04 75.36±0.18 75.16±0.12 72.97±0.03
Case 5 34.94±0.08 24.07±0.25 19.67±0.05 33.91±0.12 38.86±0.02 44.48±0.03 54.13±0.16 44.93±0.11 45.92±0.06
Case 6 29.09±0.01 07.06±0.01 13.11±0.01 28.36±0.04 30.16±0.02 36.17±0.11 47.67±0.18 37.14±0.08 39.17±0.08

C02 C05 C07 C14 C27 C29 C34C22 C31C25
(a)

(b)

Fig. 2. Face samples from different views of one individual in CMU-PIE
cross-pose face dataset.

view-invariant features, we build a Fisher regularizer Ω(P,Z)
to keep the within-class compactness while preserving the
between-class discrimination.

B. Experiments

1) Datasets & Experimental Setting: CMU-PIE Face
dataset totally consists of 68 subjects with different poses
(Fig. 2). There is 21 different illumination variations for
the samples of each subject. Specifically, we adopt such
different poses, which show large view variances within the
same subject across different poses. In the experiment, we
select different numbers of views to build various evaluation
scenarios. For each pose, we randomly choose 10 samples
for training while the left for testing. Furthermore, we crop
faces into size of 64× 64 and adopt the gray-scale value as
the input.

In our experiment, we address the challenging problem
where the view knowledge of the probe data is unavailable.
Thus, conventional multi-view methods would fail. There-
fore, we mainly compare with PCA [11], LDA [12], LPP
[13], TFRR [14], SRRS [15], RMSL [3] and LRCS [5].
Specifically, LDA, RSR, SRRS, RMSL and ours are five
supervised algorithms; and PCA, LPP, TFRR and LRCS are
four unsupervised methods. Furthermore, we compare with
one conventional multi-view subspace learning algorithm,
MvDA [1], by providing it extra view knowledge of the probe
data to show the effectiveness of our algorithm.

The nearest neighbor classifier (NNC) is adopted to testify
the final classification results. We choose ten images per in-
dividual per pose to build the training set, and the remaining
data are used for testing. We do 5 random selections and re-
port the average performance. Table I represents recognition
performance on the original images.

III. FUTURE PLANS AND CHALLENGES

Currently, we develop a linear algorithm, which is not
effective enough in feature learning compared with deep
learning models. Thus, deep learning based algorithm will
be proposed to effectively extract view-invariant features.

Moreover, our current model cannot well deal with large-
scale data, as the complexity is O(m3), and therefore, more
efficient alternative will be developed to well handle large-
scale dataset. Furthermore, our current model assumes the
dimensionality of each view is same, which may be not
satisfied in reality. Thus, a more general model will be
designed to fight off this shortcoming.

Specifically, I will focus on the last two challenges by
designing a more efficient and general model [from Feb 2017
to June 2017]. After that, I will explore deep learning for
view-unseen image classification [from July 2017 to May
2018].
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