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I. INTRODUCTION

Using face recognition as a form of authentication has
become widespread due to the advances in face detection
and recognition algorithms. The existing state of the art face
recognition algorithms can recognize a given user with 99%
accuracy [1]. Biometrics authentication systems based on
face recognition are already commonly used in applications
ranging from border security to unlocking smartphones.
Despite being commonly used and their high recognition
accuracy, face recognition algorithms suffer from vulnera-
bility to simple spoofing attacks. For instance, an attacker
may easily obtain a photograph of the authentic user by
downloading it from their social media page and use it to
successfully fool the face recognition system. In addition to
photographs, more sophisticated methods of attacks, such as
replaying a video of the user or making a realistic 3D mask
have been used [2].

In this work we propose using physiology as a new
method of verifying liveness of a user’s face. Using a regular
camera we can observe photopletysmograms (PPG) which
are signals related to color changes in the skin caused by
blood flow. We can differentiate between a live face and a
face attack or the background by training a machine learning
classifier on the frequency spectra of these PPG signals.
Machine learning is able to pick out subtle patterns present in
the frequency spectra of live signals and accurately classify
a presented face as live or as an attack.

In addition, we consider how this work can be extended to
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Fig. 1. PPG signals derived from color changes due to blood flow can be
observed from a video recording of a live face because some of the light
is able to pass through the skin and reach blood vessels. These types of
color changes are not present in face attacks because there are no blood
vessels present. Therefore, the observed intensity changes do not have the
characteristic PPG signals properties.
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Fig. 2. PPG signals from different facial regions on a live face share
characteristic similarities that are abscent in signals from a face attack or
the background regions.

detecting live skin regions other than the face. For example,
this can aid in finding survivors during a rescue mission
by using drones with cameras. Finally, we consider chal-
lenges and limitations of the proposed method and possible
improvements which remain to be done in the future.

II. OVERVIEW

An RGB camera can detect PPG signals caused by blood
flowing through the circulatory system of a live skin region.
These PPG signals are absent in areas which do not contain
live skin regions. Some light passes through the skin and
some is reflected at the surface. A portion of the light that
passes through the skin is absorbed at the surface in the
dermis skin layer by melanin present in the epidermis layer,
and some remaining light reaches the blood vessels. When a
material covers the skin, the majority of the light is absorbed
or reflected by that material and only a small portion of the
light reaches the skin beneath. Therefore, the captured video
does not contain these subtle pulsatile color changes induced
by the blow flow (See Figure 1). Furthermore, signals from
several facial regions share similarities in the frequency spec-
tra and have a peak related to a heart beat frequency, around



1 Hz band. Signals measured from the background and from
face attack materials, such as photographs or videos, have
random frequency spectra without these common similarities.
This allows us to detect a difference between a live skin
region and other elements in the scene. We illustrate the
differences in the observed frequency spectra of PPG signals
from live faces and face attacks in Figure 2.

III. PRIOR WORK

Various anti-spoofing methods have been explored to pre-
vent attacks on face recognition systems using a fake face,
such as a photograph, video or a mask [2]. Prior anti-spoofing
techniques can be categorized as motion-based, appearance-
based [2] and physiology-based.

A. Motion and Appearance Based Anti-spoofing

Motion-based techniques consider the differences in mo-
tion between live authentic faces and face attacks, such
as blinking [3]–[5], gaze [6] or pupillary reflex [7], [8].
Meanwhile, some appearance-based methods used differ-
ences in texture and spectral reflectance between live faces
and face presentation attacks [9]–[11], as well as differences
in multispectral properties of skin and mask materials [12].
These methods are designed to prevent a specific kind of
attacks and they often don’t generalize well to many different
kinds of sophisticated attacks. For example, if an attacker
is wearing a mask made of a realistic material with holes
cut out for their eyes, neither the motion nor texture based
methods will be able to classify it as an attack.

B. Physiology Based Anti-spoofing and Liveness Detection

A recent approach employed by several groups is to use
camera-based physiology measurements to design an anti-
spoofing technique. Due to rapid advances in camera-based
vital signs detection, such as pulse rate, pulse rate variation
and breathing rate [13]–[17], it is possible to use a regular
webcam to detect PPG signals related to blood flow in
the skin. Since those PPG signals detected from live skin
regions share properties that differentiate them from other
signals, several approaches used this property to for liveness
detection. The goal of liveness detection is to locate the live
skin regions in the videos, while the goal of anti-spoofing
methods is to verify that a presented face corresponds to
a live authentic user. Existing attempts in the literature
of physiology-based anti-spoofing or liveness detection are
limited to datasets with a small variety of attacks or do
not address the more challenging issues of varying light
conditions and motion [18]–[21].

IV. METHODOLOGY OF PPGSECURE

The algorithm we developed to distinguish between live
faces and face attacks is called PPGSecure. First, we extract
PPG signals from the forehead and the cheeks, as well
as from the background regions behind the person. We
select these particular facial regions becasue the PPG signals
tend to be the strongest in those areas. The advantage of
including the background regions in the spectral features

is that any temporal variations in intensity induced due to
illumination intensity fluctuations will be the same for the
face in the foreground and the background regions. But the
physiological pulsatile signals will induce intensity changes
only in a live face in the foreground.

To compute the PPG signals, we detect facial landmarks
[22], track the facial regions of interest [23] and average the
temporal intensity changes in the green channel to obtain a
single PPG signal describing each region of interest. Once
we have extracted the raw PPG signals from the face and
the background, we subtract the mean and bandpass filter the
PPG signals in physiological range, [0.5 Hz, 5 Hz]. The mag-
nitude of the Fourier spectrum of each filtered PPG signal is a
spectral feature. We concatenate these spectral features from
three facial regions and two background regions to obtain a
spectral feature vector for classification.

We train a support vector machine (SVM) [24] and a
random decision forest (RDF) classifier [25] on these spectral
features of training subjects’ videos. We use a leave-one-
subject-out validation method to avoid training and testing
on spectral features from videos of the same person.

V. RESULTS

PPGSecure outperforms the state-of-the-art [19] on a pub-
licly available Replay-Attack dataset which contains photo-
graph and video attacks, both fixed and handheld in front of
the camera. Liu et al. ’s [19] performance drops when the
face attack is handheld in front of the camera. Their perfor-
mance was 88% on photograph attacks and 85% on video at-
tacks, compared to 99% - 100% accuracy of PPGSecure. This
could be because Liu et al. ’s method looks for correlated
changes in the facial regions and handshake motion makes
the whole photograph or video move uniformly, resulting
in strong cross-correlation patterns. This work, PPGSecure
performs better when the PPG signals are bandpass filtered
before taking the Fourier transform, improving the initial
result from 83% accuracy on video attacks and 91% on
photograph attacks to 99% accuracy. This could be because
bandpass filtering removes unrelated noise from frequency
bands outside the physiological range. Furthermore, adding
background regions improves the performance of PPGSecure
resulting in close to 100% final accuracy.

VI. LIMITATIONS AND CHALLENGES

The accuracy of the proposed physiology-based liveness
detection method is limited by many factors influencing
the accuracy of physiology measurements from a video
recording. Some of these limitations are listed below.

A. Skin partially covered
In this work we assumed that a face is fully visible in

the camera. However, there are cases when a person has
facial hair covering the skin regions. For this method to be
extended beyond face anti-spoofing applications, we need to
consider a situation when there are several regions of the
skin visible and several covered regions. We will need to
develop a strategy to consolidate these signals from different
regions to determine where a person is located.



B. Motion and varying lighting conditions

When a person is moving, it leads to sudden changes in
the incident illumination on the skin and shadows, corrupting
the PPG signal measurement. Furthermore, varying illumi-
nation will cause difficulties, for example when a person is
outdoors. PPG measurements are based on temporal, periodic
intensity variations in the skin, therefore any unanticipated
intensity changes not related to the PPG signal will make it
difficult to detect the PPG signal.

C. Distance

PPG signals extracted from a video recording are very
weak, therefore, when a camera is located far from the skin
region, PPG signals are harder to detect.

VII. CURRENT AND FUTURE WORK

The described PPGSecure method did not adress the men-
tioned difficulties but understanding and overcoming these
challenges is a part of our future work. We are currently
exploring the aforementioned challenges and developing a
more accurate method to detect and amplify the weak PPG
signal. At the same time our method should not remove all of
the noise so that is possible to distinguish between living skin
and the background. Future work includes improvements
in PPG signal detection, as well as extending this method
beyond face anti-spoofing to live skin detection.

A. Robust PPG measurement

Simple averaging of the intensities to get a rough PPG
signal, as it was done in PPGSecure may not be sufficient
in more difficult scenarios. Obtaining a more accurate PPG
signals measurement can aid in improving liveness detection
in low light, motion and larger distance. We are working on
understanding the theoretical maximum distance and motion
and minimum light conditions for the proposed method to
work.

B. Extension To Live Skin Detection

Liveness detection does not require an exact measurement
of the vital signs but a rough measurement of the PPG
waveform may be sufficient to distinguish live regions from
fake ones. We are working on understanding if this method
can work in more adverse scenarios than methods intended
for health monitoring. We are working on analyzing what is
the maximum distance that a person can be from the camera
for this method to work. Additionally, we are exploring the
minimum camera requirements, such as temporal and spatial
resolution, as well as how much motion can be present
between the person and the camera.
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